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ABSTRACT 

 

Double-negative (DNG) metamaterials, refer to artificially created materials both 

having negative permittivity and effective permeability at a given frequency. In the last several 

years, double negative metamaterials attract a great deal of attention from scientists. 

In the area of high frequency application, transmission line serves as the fundamental 

building blocks. Due to the different application purposes, two kinds of microstrip are widely 

studied, shielded and open. In 2003, Krowne published his numerical results for shielded 

microstrip line with double negative metamaterials. 

In this research, Chebyshev polynomials are chosen for the current basis functions and 

diverse model structures are analyzed. Spectral domain approach (SDA) is used to explore the 

electric guiding-wave properties of specific structures with DNG metamaterials, containing 

dispersion curves, field distributions, power flow, and characteristic impedance. Convergence 

test of the dispersion constant over different sizes of current basis is analyzed for the open 

microstrip. The numerical results show that propagating mode or complex mode is found at 

different frequencies and geometric setups. Field distributions show the significant difference 

from that of double positive (DPS) materials. To improve the calculation efficiency, numerical 

acceleration techniques are included and implemented. The numerical analysis implies that the 

shielding walls have great impact on the propagating properties in the shielded microstrip line. 

The open microstrip line filled with DNG metamaterials exhibits significant loss in its 

fundamental mode, indicating that it is not a good candidate for transmission line. 
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CHAPTER 1. OVERVIEW 

1.1  Introduction 

So far, the naturally-occurring materials exclusively obey the right-hand rule, which 

means that electric field E , magnetic field H , and wave vector k  are in the right hand rule. In 

the view of media parameters, the right hand rule implies that the permittivity and 

permeability are both positive. So the conventional materials are usually called right-hand 

materials (RHM) or double positive (DPS) materials. While, double negative (DNG) 

metamaterials are artificially patterned metal-dielectric structures. Due to the negative 

permittivity and permeability, the electric field, magnetic field and wave vector follow the left 

hand rule instead of right hand rule. So DNG metamaterials are also called left-hand 

metamaterials (LHM). In DNG metamaterials, the group velocity and phase velocity are in 

different directions. Thus, the direction of phase velocity is opposite to that of the energy 

velocity. This interesting property will cause the negative-index of refraction. So DNG 

metamaterials are also called negative index metamaterials (NIM). 

DNG metamaterials were first proposed by a Russian scientist Veselago in 1968 [1]. 

The new properties of DNG metamaterials were analyzed, such as negative index of refraction, 

opposite group and phase velocity, reversed Doppler effect [1, 2, 3].  

After Veselago’s work, only much later, LHM began to attract the attention of scientist. 

In the last several years, DNG metamaterials attract a great deal of attention from scientist and 

researchers. In 1999, Pendry and his colleagues analyzed a metamaterial, which had negative 
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permeability. Pendry also published on subjects such as surface plasmas and negative 

refractive index materials [4, 5]. 

In 2000, D. R. Smith and his colleagues made impressive progress in the field of DNG 

metamaterials. They fabricated a periodical structure that simultaneously had negative 

permeability and negative permittivity in a small frequency range [6]. One year later, in the 

experiments, they observed negative refraction index [7, 8]. All these pioneer works give birth 

to a new field of research (DNG metamaterials). After that, a great deal of attentions from 

scientific and engineering communities is paid to the DNG metamaterials.  

In 2003, Krowne published his numerical results of the shielded microstrip line with 

DNG metamaterials [22]. In W. Shu’s Ph.D thesis, dielectric slab with DNG metamaterials is 

analyzed. The dispersion properties for the DNG dielectric slab are obtained [16]. He also 

worked on the open microstrip line with DNG metamaterials and got the dispersion curves 

[17]. 

In this thesis, spectrum domain approach (SDA), which is a full-wave method that 

solves the Maxwell’s equation directly to find appropriate solutions that satisfy some 

boundary conditions, is used to explore the electromagnetic guiding-wave properties of 

specific structures with double negative metamaterials, containing dispersion curves, field 

distribution, power flow, and characteristic impedance. Two microstrip models, which are 

shielded and open, are analyzed. Chebyshev polynomials with coefficients are used to expand 

the unknown current distribution. For both of shielded and open microstrip lines, propagating 

mode or complex mode is found at different frequencies and geometric setups. The field 

distributions in spatial domain show the significant difference from that of double positive 

materials. To reduce the calculation cost, numerical acceleration techniques, such as leading 
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term extraction, are included and implemented. Numerical results imply that the shielding 

walls have great impact on the propagating properties in the shielded microstrip line. The open 

microstrip line with DNG metamaterials possesses significant loss in its fundamental mode, 

which indicates that it is not a good candidate for a transmission line. 

1.2  Research motivation 

As the developing of communication industry, the high frequency circuit design begins 

to be more critical. The planar passive transmission line is extensively implemented in modern 

high frequency circuits. In the industry, most of interconnections and passive networks are 

consisted of transmission lines. For example, the matching networks in power amplifier can be 

realized by the transmission stubs. The de-embedding techniques for the MMIC (Monolithic 

Microwave Integrated Circuits) components require SOLT (short-open-load-through) 

transmission structures to shift the phase reference plane to the DUT (device under test). In 

receiver design, the filter can be implemented by transmission stubs or couple lines.  

For the transmission line, the properties are directly relevant to its medium parameters. 

For example, the phase velocity of a transmission line mainly depends on its dielectric 

constant, especially the real part.  

As the operating frequency increases, the parasitic effects in microstrip line begin to be 

significant. For example, in GaAs based MMIC, the Q (quality factor) of printed inductor is 

very low due to the thin dielectric, which can increase the parasitic capacitor. Therefore, it is 

meaningfully and worthwhile to investigate the properties of transmission lines with DNG 

metamaterials.  
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According to the different application fields, the transmission lines can be modeled as 

open or shielded. Figure 1.1 shows two microstrip lines with DNG metamaterials that will be 

solved in this thesis.  

 

             (a) Open microstrip line                     (b) Shielded microstrip line 

Figure 1.1 Open and shielded microstrip Lines with DNG metamaterisls  

below the strip and air above. 

 

With these motivations, we move to the numerical analysis of the DNG metamaterials. 

To predict accurately the electrical performance of the transmission lines over a given 

frequency band, the full-wave spectral domain approach is applied [9, 10, 11]. In order to 

simplify the problem, Fourier transform is performed over x direction.  In spectral domain, the 

boundary conditions are used to derive the Green’s functions. Chebyshev polynomials are 

chosen for the current basis functions. Then method of moments is applied to get the 

dispersion properties. With the obtained propagation constant, the spatial domain field can be 

calculated from the spectral domain fields by inverse Fourier transform. With the Parseval’s 

theorem, the total power can be calculated.  

1.3  Organization of the thesis 

The rest part of the thesis is organized as follows. Chapter 2 investigates the shielded 

microstrip lines. Spectral domain analysis is applied to get the potential, field, Green’s 
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functions etc. Current basis functions of Chebyshev polynomials are also included. Then 

method of moments is applied to get the dispersion properties. At a given frequency, the 

propagation constant can be solved. Then the field distributions in spatial domain, total power, 

and characteristic impedance are derived. 

Chapter 3 provides the numerical considerations and results. First, in order to reduce 

the CPU time of the calculation, some numerical acceleration techniques are analyzed and 

implemented. Then the numerical results such as dispersion curves, field distribution, power 

flow, and characteristic impedance are provided. The summary and future works go to Chapter 

4.  

In Appendix A, the spectral analysis of open microstrip lines with DNG metamaterials 

is provided, which is similar to the shielded case. 
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CHAPTER 2. SHIELDED MICROSTRIP LINE WITH DNG 

METAMATERIALS 

In modern microwave/RF systems and circuits, transmission line is widely used. 

Among the transmission lines, microstrip is the one that mostly used. Studying the properties 

of microstrip line with DNG metamaterials will provide us a fundamental understanding of the 

DNG metamaterisl. In the following chapters, several microstrip models, containing shielded 

microstrip, open microstrop, will be analyzed. The spectral domain approach is applied to get 

the dispersion properties, based on which we will get other information, such as field 

distribution, power, impedance [9, 10, 11].  

2.1  Introduction 

In the last several years, a lot of theoretical simulation and analysis have been 

conducted, concerning the properties of DNG material. In current high frequency circuit 

design, the transmission line such as: microstrip line, strip line, CPW line with double positive 

material are clearly understood and widely used by the modern RF/Microwave engineers [12]. 

While, when moving to the DNG material, we find that there are many interesting and 

attractive features, such as the dispersion curves with complex mode, different field 

distribution from the microstrip with DPS materials.  

2.1.1  Model setup 

In the application, multilayer-microstrip is often considered for compact layout and 

cost saving. It is meaningful to study the microstrip with perfect electric conductor (PEC) 
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walls for shielding. In this chapter, we will study the properties of the shielded microstrip lines 

with DNG materials. Spectral domain approach is utilized for numerical calculations.  

 
Figure 2.1 Shielded microstrip line 

 
Figure 2.1 shows the cross section view of the shielded microstrip line. In this model, 

the DNG metamaterial is layered on the bottom PEC wall with a thickness of h . Above the 

DNG metamaterial, it is filled with air. At the interface of the two dielectrics, an infinite thin 

strip is placed with a width of w . Moreover, there is a top layer of perfect conductor placed 

with a height of d  above the strip. Two side walls of PEC are placed symmetrically with 2a  

distance.  

2.2  Spectral domain analysis 

Due to the phase matching at the interface of air and DNG metamaterial, pure TEM 

(transverse electromagnetic) mode cannot be supported in this microstrip model. So in spectral 

domain approach, we use the hybrid modes instead of pure TEM mode, then a superposition of 

Region 1

Region 2
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infinite TEz (transverse electric) and TMz (transverse magnetic) modes can be analyzed [13].  

Vector potentials can be used to express all the field components.  

2.2.1  Vector potential 

In the analysis of electromagnetic problems with boundary conditions, it is common 

practice to use auxiliary vector potentials to get the solutions. The most used are magnetic 

vector potential ( A ) and electrical vector potential ( F ).    

For TMz mode, the vector potential is given as:   

                   ( ) ( ) ( ), , ,e j zi i
zi iA x y z x y e βωμ ε

β
−= − Φ                                                       (2.1) 

For TEz mode: 

                ( ) ( ) ( ), , ,h j zi i
zi iF x y z x y e βωμ ε

β
−= − Φ                                                           (2.2) 

The scale potentials satisfy the Helmholtz equations at y h≠ : 

                ( ) ( ) ( ) ( ) ( )2 2 2, , 0p p
t i i ix y k x yβ∇ Φ + − Φ =                                                 (2.3) 

in which, 2 2
i i ik ω ε μ= , 1, 2i = , ,p e h= . 

Solving the Helmholtz equations, all of the field components are derived 

( )
( ) ( )

( )
( ) ( )

( ) ( )

( )
( ) ( )

( )
( ) ( )

2 2

,

,

,

,

,

e h
i i i

xi

e h
i i i

yi

ei
zi i

h e
i i i

xi

h e
i i i

yi

E x y
x y

E x y
y x

kE x y j

H x y
x y

H x y
y x

ωμ
β

ωμ
β

β
β

ωε
β

ωε
β

∂Φ ∂Φ
= +

∂ ∂

∂Φ ∂Φ
= −

∂ ∂

−
= Φ

∂Φ ∂Φ
= −

∂ ∂

∂Φ ∂Φ
= +

∂ ∂
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( ) ( )
2 2

, hi
zi i

kH x y j β
β
−

= Φ                                                                            (2.4) 

In the above field expression, one should notice that j ze β− is dropped. 

2.2.2  Fourier series 

In spectral domain analysis, we apply Fourier transform over x  to reduce the partial 

differential equations (PDE) to ordinary differential equations (ODE).  

Due to the shielded side walls, the vector potentials are only defined for x  from a−  to 

a . So in shielded microstrip line, the inverse Fourier transform should be changed to series 

summation.  

                                ( ) ( ) ( ) ( ), , n
ap p j x

i ia
n y dx x y e α

−
Φ = Φ∫                    (2.5) 

                                ( ) ( ) ( ) ( )1, ,
2

mp p j x
i i

m
x y m y e

a
α

∞
−

=−∞

Φ = Φ∑                          (2.6) 

in which, 1, 2, , , .mi p e h m aα π= = =        

In (2.6), a full range summation is included. To reduce the CPU time, we applied 

boundary conditions on the field component.  

Considering the field components in (2.4), the electric field components zE and yE , for 

the fundamental quasi-TEM mode, should be an even function of x , so 

                            
( ) ( ) ( )
( ) ( ) ( )

, cos

, sin

e
i m

h
i m

x y x

x y x

α

α

Φ

Φ

∼

∼
                                            (2.7) 

On two side walls, the tangential electrical fields meet the PEC boundary condition, so  

                            
( ) ( )
( ) ( )

, 0
0

, 0

e
i

z yx a hx a
i

a y
E E

a y=± =±

⎧Φ =⎪= = ⇒ ⎨
′Φ =⎪⎩

                          (2.8) 
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Substitute the potential into the field expressions, then we arrive at  

                            ( )
2

cos 0
2 1

m
m

a m
x

m n
α π

α
=⎧

= ⇒ ⎨ = −⎩
                                    (2.9) 

so m is odd. (2.7) implies that ( ) ( ),e
i x yΦ is an even function of x , and ( ) ( ),h

i x yΦ is an odd 

function of x .  

           Rewriting (2.9), we get 

( )1 2n n aα π= −                                         (2.10) 

           Now, let’s return to the Fourier transform. In the shielded microstrip line, all of the 

fields components and potentials are defined for x from a− to a . If we expand the expressions 

as periodic functions of x with a period of 4a . Then we can get 

                                ( ) ( )
2

2
m

a j x

a
f m dx f x e α

−
= ∫                                                   (2.11) 

( ) ( )1
4

mj x

m

f x f m e
a

α
∞

−

=−∞

= ∑                                                                    (2.12) 

If ( )f x is an even function, (2.11) can be rewritten as 

                           
( ) ( ) ( )

( ) ( ) ( ) ( )

2

0
2

0

2 cos

2 cos 2 cos

a

m

a a

m ma

f m dxf x x

dxf x x dxf x x

α

α α

=

= +

∫
∫ ∫

          (2.13) 

let 2x a x′= −  

                         ( ) ( ) ( ) ( )
2

0
cos 2 cos 2

a a

ma
dxf x x dx f a x m x aα π′ ′ ′= − − ⎡ ⎤⎣ ⎦∫ ∫           (2.14) 

Combining the two parts together, it comes to 

                        ( ) ( ) ( ) ( )
0

2 2 cos
a

mf m dx f x f a x xα= − −⎡ ⎤⎣ ⎦∫                        (2.15) 

Therefore, if we expand the ( )f x as  
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                        ( ) ( )2f x f a x= − −             2a x a< <                   (2.16) 

With ( ) 0f a = , we get 

                       ( ) ( ) ( ) ( )
0

4 cos 2 n
a a j x

n a
f n dxf x x dxf x e αα

−
= =∫ ∫                                      

       (2.17) 

                      ( ) ( ) ( )
1

1 cos
2 n

n

f x f n x
a

α
∞

=

= ∑               (2.18) 

Similarly, if ( )f x is an odd function and ( ) 0f a′ = , we expand as 

                      ( ) ( )2f x f a x= −  2a x a< <                                                                (2.19) 

                      ( ) ( ) ( ) ( )
0

4 sin 2 n
a a j x

n a
f n j dxf x x dxf x e αα

−
= =∫ ∫                                              (2.20) 

                      ( ) ( ) ( )
1

sin
2 n

n

jf x f n x
a

α
∞

=

−
= ∑                                                                            (2.21) 

(2.18) and (2.21) implies that the modified inverse Fourier series can cut the summation time 

to half. It will improve the numerical efficiency.  

As illustrated above, ( ) ( ),e
i x yΦ is even and ( ) ( ),h

i x yΦ is odd. Applying to (2.18) and 

(2.21) on them, we get the spatial scale potentials.  

                   ( ) ( ) ( ) ( )
( ) ( ) ( )

( ) ( ) ( )

1

1

, cos
1 1, ,

2
, sin

m

e
i n

np p j x
i i

m h
i n

n

n y x
x y m y e

a a
j n y x

α

α

α

∞

∞
=

∞
=−∞

=

⎧ Φ⎪⎪Φ = Φ = ⎨
⎪− Φ
⎪⎩

∑
∑

∑
                           (2.22) 

where ( )1 2n n aα π= −  

To reduce the partial differential equation (PDE) in (2.3) to ordinary differential 

equation (ODE), we conduct Fourier transform on the two sides of (2.3). Then the Helmholtz 

equations in spectral domain is  
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             ( ) ( )
2

2
2 , 0p

i i
d y
dy

γ α
⎛ ⎞

− Φ =⎜ ⎟
⎝ ⎠

               (2.23) 

(2.23) is an ordinary differential equation, there are two kinds of general solutions 

depending on the boundary conditions. 

             
( ) ( ) ( ) ( ) ( ) ( ), i ip p py y
i i in y A n e B n eγ γ−Φ = +                                                        (2.24) 

or                     ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ), sinh coshp p p
i i i i in y C n y D n yγ γΦ = +                                      (2.25) 

In spectral domain, the field components in (2.4) are y and α  dependant.  

 

            

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

2 2

2 2

, , ,

, , ,

, ,

, , ,

, , ,

, ,

e hi
xi i i

e hi
yi i i

ei
zi i

h ei
xi i i

h ei
yi i i

hi
zi i

E y j y y
y

E y y j y
y
kE y j y

H y j y y
y

H y y j y
y
kH y j y

ωμα α α α
β

ωμα α α α
β

βα α
β

ωεα α α α
β
ωεα α α α
β

βα α
β

∂
= − Φ + Φ

∂
∂

= Φ + Φ
∂

−
= Φ

∂
= − Φ − Φ

∂
∂

= Φ + − Φ
∂

−
= Φ

                                             (2.26) 

Correspondingly, j ze β− is also dropped.  

2.2.3  Boundary conditions 

In the previous parts, we derive the solutions to Helmholtz equations in spectral 

domain and get two kinds of general solutions, which depend on the different boundary 

conditions.  

For PEC layer at the bottom and top, the boundary conditions are that the tangential 

components of electric field are zero, so  
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                  ( ) ( ) ( ) ( ) ( ) ( )1 2 1 2, 0 , 0 ,0 , 0e e
z zE n E n h d n n h d= + = ⇒ Φ = Φ + =                              (2.27) 

                  ( ) ( ) ( ) ( ) ( ) ( )1 2 1 2,0 , 0 ,0 0 , 0h h
x xE n E n h d n n n h

y y
∂ ∂

= + = ⇒ Φ = = Φ + =
∂ ∂

            (2.28) 

With (2.27), (2.28), and (2.24) can be reduced to  

                               ( ) ( ) ( ) ( )1 1, sinhe n y A n yγΦ =                                                                    (2.29) 

                               ( ) ( ) ( ) ( )1 1, coshh n y C n yγΦ =                                                                  (2.30) 

                               ( ) ( ) ( ) ( )
( )

2
2

2

sinh
,

sinh
e h d y

n y B n
d

γ
γ
+ −⎡ ⎤⎣ ⎦Φ =                                                       (2.31) 

                               ( ) ( ) ( ) ( )
( )

2
2

2

cosh
,

cosh
h h d y

n y D n
d

γ
γ
+ −⎡ ⎤⎣ ⎦Φ =                                                   (2.32) 

(2.26) implies that, to get the field components, the potentials expansion coefficients are 

demanded. While, there is one unknown in each potential expression. So at least, we need four 

more equations to solve them.  

The tangential electrical fields of two regions at the interface are continuous. So in 

spectral domain: 

                                  
( ) ( )
( ) ( )

1 2

1 2

, ,

, ,
z z

x x

E n h E n h

E n h E n h

=

=
                                                                       (2.33) 

Substitute the field components into (2.33), we arrive at 

                  

( ) ( ) ( )
( ) ( ) ( )

2 2 2 2
1 1 2

1 1 1 1 2 2 2

sinh

sinh sinh tanhn

k A h k B

j A h B C h D d

β γ β

ωα γ γ μ γ γ μ γ
β

− = −

− = +⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦                     (2.34)
 

For infinite thin strip, no current component flows in y -direction. So surface electric current 

is considered in x -and z -direction, which is denoted as  
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                            ( ) ( ) ( )ˆ ˆ, j z
s x zJ x z xJ x zJ x e β−= +⎡ ⎤⎣ ⎦                                                           (2.35) 

Then the magnetic field boundary conditions in spatial domain yield 

                             ( )2 1ˆ sy H H J× − =                                                                                   (2.36) 

In spectral domain, the boundary conditions can be written as 

                             
( ) ( ) ( )
( ) ( ) ( )

2 1

2 1

, ,

, ,
z z x

x x z

H n h H n h J n

H n h H n h J n

− =

− = −
                         (2.37) 

Substitute the vector expression into the above equations and rewrite the two equations: 

      
( ) ( ) ( ) ( )

( ) ( ) ( )

2 2 2 2
1 1 2

1 1 1 2 2 2 1

cosh

cosh coth cosh
x

n n z

k h C k D j J n

j h A j d B h C D j J

β γ β β

ωε γ γ ωε γ γ α β γ α β β

− − − =

+ − + = −
       (2.38) 

So far, we have four equations with four unknowns, we can solve them to get the 

solutions. To simplify the problem solving, all of the elements are filled into a matrix as: 

 

( )
( ) ( ) ( )

( )
( ) ( ) ( )

2 2
1 1 2

1 1 1 1 2 2 2
2 2

1 1 2

1 1 1 2 2 2 1

0sinh 0 0
0sinh sinh tanh

0 0 cosh
cosh coth cosh

n n

x

zn n

AP h P
Bh j h j d

j JCP h P
j JDj h j d h

γ
α β γ α β ωγ μ γ ωγ μ γ

βγ
βωε γ γ ωε γ γ α β γ α β

⎛ ⎞− ⎛ ⎞⎛ ⎞
⎜ ⎟ ⎜ ⎟⎜ ⎟−⎜ ⎟ ⎜ ⎟⎜ ⎟=⎜ ⎟ ⎜ ⎟⎜ ⎟−
⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎟ −− ⎝ ⎠ ⎝ ⎠⎝ ⎠

    (2.39) 

in which, 2 2 2
1 1P k β= − , 2 2 2

2 2 .P k β= −  

According to (2.34) and (2.38), we can derive the following relations:  

                                  ( )

( ) ( )

2
2

2
1 1

2
2

2 2
1 1 1 1

sinh

cosh cosh
x

P BA
P h

j JP DC
P h P h

γ

β
γ γ

=

= +

                                                             (2.40) 

Substituting A and C into the matrix, comes to  

                                 
1

22 12

21 11 2
1

1 x

x z

F Jb bB
J Jb bD

P
αβ
⎛ ⎞

− −⎛ ⎞⎛ ⎞ ⎜ ⎟= ⎜ ⎟⎜ ⎟ ⎜ ⎟−− −Δ⎝ ⎠ ⎝ ⎠⎜ ⎟
⎝ ⎠

                                                        (2.41) 
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where  

        

( )

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

( )
( )

2 2
11 22 2 12 2

1

2 2 2 2
12 2 2 1 2 1 1 2 12 2

1

2 2 2 2
21 2 2 1 2 1 1 2 12 2

1

1 1 1
1 2 2

1

tanh tanh

coth coth

tanh

njb b k k
k

b k d k h
k

b k d k h
k

h
F

j k

α
β

ω γ μ β γ γ μ β γ
β β

ω γ ε β γ γ ε β γ
β β

ωμ γ γ
β

= − = −
−

⎡ ⎤= − + −⎣ ⎦−

⎡ ⎤= − + −⎣ ⎦−

=
−

                               (2.42) 

 ( ) ( ) ( ) ( )2 1 1 1 2 2 2 1 1 1 2 2coth coth tanh tanhh d h dμ γ γ μ γ γ ε γ γ ε γ γΔ = + +⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦                      (2.43) 

To this end, the ABCD parameters are derived [9]. However, we still have many unknowns, 

such as the surface current, propagating constant etc. 

2.2.4  Green functions 

In order to know the guiding properties of the shielded microstrip, the propagating 

constant needs to be solved. Thus, more coupled equations are demanded. With the parameters 

from boundary conditions, now we can derive the expressions for the Green functions.  

First we rewrite the field of the spectrum domain at the interface as the form of vector 

potential  

                   
( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

2
2 2 2 2

2
2 2

, , ,

tanh

e h
x n

n

E n h j n h n h
y

j B n d D n

ωμα γ
β

ωμα γ γ
β

∂
= − Φ + Φ

∂

= − −

                        (2.44) 

                   ( ) ( ) ( ) ( )
2 2 2 2
2 2

2 2, ,e
z

k kE n h j n h j B nβ β
β β
− −

= Φ =                         (2.45) 

Then we can change the forms of the fields to Green’s functions 
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( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( )

2

2

, , ,

, , ,
x xx x xz z

z zx x zz z

E n h G n J n G n J n

E n h G n J n G n J n

β β

β β

= +

= +
                                                 (2.46) 

where 

                    

( ) ( ) ( )

( ) ( ) [ ]

( ) ( ) ( )
( ) ( ) ( )

2 2 2 22
1 2 2 2 1 1

2

2
2 2 1 1

2

2 2 2 22
1 2 2 2 1 1

2

2 2 1 1 2 2

, tanh( ) tanh( )

, , tanh( ) tanh( )

, tanh( ) tanh( )

tanh tanh coth

xx n r n

n
xz zx r

zz r

r r

jG n k d k h
k

jG n G n d h
k

jG n k d k h
k

d h d

ηβ α γ γ μ α γ γ

η α ββ β γ γ μ γ γ

ηβ β γ γ μ β γ γ

ε γ γ γ γ μ γ γ

− ⎡ ⎤= − + −⎣ ⎦Δ
−

= = +
Δ

− ⎡ ⎤= − + −⎣ ⎦Δ

Δ = + +⎡ ⎤⎣ ⎦ ( )1 1coth hγ γ⎡ ⎤⎣ ⎦

                      (2.47) 

in which, 1 2 1 2,r rε ε ε μ μ μ= =  

2.3  Method of moments 

2.3.1  Current basis functions  

So far, we still do not know the current distribution on the strip. But the current can be 

expanded with basis functions with unknown coefficients. Moreover, the basis functions must 

be chosen such that their inverse Fourier transforms are nonzero only on the strip 2x w≤ . 

In this thesis, the transverse current and longitudinal current are approximated by the 

expansions of Chebyshev polynomials with singularity [13, 14]. 

                                     
( ) ( ) ( )

( )
( )

( )

2
2 1

1

2 22
1

1 2 2

1 2
1 2

M

x xn n
n
N

z zn n
n

J x j x w I U x w

J x I T x w
x w

−
=

−
=

= −

=
−

∑

∑
                                       (2.48) 

where ( )nT x  and ( )nU x are the first kind and second kind of Chebyshev polynomials.  

            Applying Fourier transform to the above current basis, we come to: 
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( ) ( )

( ) ( ) ( )

2
1

2 1
1

M

x n n m m
n
N

z n mn
n

J m a J

J m b J

δ α

δ

=

−
=

=

=

∑

∑
                                                            (2.49) 

where ( ) ( ) 11 2 , 1 2, 2n n
n xn n zn m ma nI w b I w wπ π δ α−= − = − = , ( )nJ x  is the Bessel function of 

the first kind. 

2.3.2  Galerkin’s methods 

For the shielded microstrip line, the tangential components of electrical field at the 

interface of region 1 and region 2 are given in (2.46). The current expansion parameters and 

the fields out of strip in spectral domain are unknowns. For the above coupled equations, 

Galerkin’s method can be applied in the Fourier transform domain.  

The Parseval’s theorem is: 

                                  ( ) ( ) ( ) ( )1
2

a

a
f n g n dxf x g x

a

∞

−
−∞

= −∑ ∫                                                      (2.50) 

At the height of h , the field satisfies the conditions: 

                                       ( ) ( )1 2

20
, ,

2unkownz z

x w
E x h E x h

x w
<⎧

= = ⎨ >⎩
                                     (2.51) 

                                       ( ) ( )1 2

20
, ,

2unkownx x

x w
E x h E x h

x w
<⎧

= = ⎨ >⎩
                                   (2.52) 

While the current satisfies the following conditions: 

                           ( ) ( )
2unknown

,
20x z

x w
J x J x

x w
<⎧

= ⎨ >⎩
                                          (2.53) 

We have four unknowns here.  In order to simplify the calculation, we write their 

products in the whole x range as: 
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                           ( ) ( ) 0qi qE x J x− =                                                                       (2.54) 

where , , 1,2q x z i= =  

Applying the Parseval’s theorem to (2.46) by multiplying ( )xmJ n and ( )ziJ n to the first and 

second, then perform the summation over n , we get: 

                                    0xx xz

zx zz

K K A
K K B

⎛ ⎞⎛ ⎞
=⎜ ⎟⎜ ⎟

⎝ ⎠⎝ ⎠
                                                             (2.55) 

where 

                            

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

( ) ( )1 2 1 2

,

,

,

, ,..., , ,...,
1, 2,..., 1, 2,...,

mi
xx xm xx xi

n

mi mi
xz zx xm xz zi

n

mi
zz zm zz zi

n

x x xM z z zN

K J n G n J n

K K J n G n J n

K J n G n J n

A I I I B I I I
m M i N

β

β

β

∞

=−∞

∞

=−∞

∞

=−∞

=

= =

=

′ ′= =

= =

∑

∑

∑                                 (2.56) 

With the above matrix, the propagating constant can be solved from the eigenvalue 

equation. 

2.3.3  Eigen value problems 

In the K matrix, the current expansion parameter A and B are unknowns. So we have 

M N+ unknowns for current basis functions. To have non-trivial solution to (2.55), the 

determinant of K matrix must be zero. 

In the determinant of K matrix, the frequency and propagating constant are included. If 

the frequency is given, propagating constant can be solved by the eigenvalue equation. 
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                              ( ), det 0xx xz

zx zz

K K
D w

K K
β

⎛ ⎞
= =⎜ ⎟

⎝ ⎠
                                                  (2.57) 

If the frequency is given, the initial guess of β can be used to find the root iteratively.  

Once the propagation constant is obtained, the normalized field and power can also be derived.  

2.4  Field distributions 

Once we get potentials expression in the spectral domain, the fields in spectral domain 

can also be derived. The inverse Fourier series summation is used.  

Here, ( ) ( )1 ,e x yΦ  is even and ( ) ( )1 ,h x yΦ is odd, according to x . Now, (2.22) is used to 

transfer the spectral domain field to spatial domain.  

Region 1 

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

1 1
1

1 1
1

1 1
1

1 1
1

1 1 1
1

1 1 1
1

1, sinh cos

, cosh sin

1, sinh sin

, cosh cos

1, cosh cos

, sinh sin

e
n

n

h
n

n

e
n n

n

h
n n

n

e
n

n

h
n

n

x y A n y x
a

jx y C n y x
a

x y A n y x
x a

jx y C n y x
x a

x y A n y x
y a

jx y C n y x
y a

γ α

γ α

γ α α

γ α α

γ γ α

γ γ α

∞

=

∞

=

∞

=

∞

=

∞

=

∞

=

Φ =

−
Φ =

∂ −
Φ =

∂
∂ −
Φ =

∂
∂
Φ =

∂

∂ −
Φ =

∂

∑

∑

∑

∑

∑

∑

                                       (2.58) 

Region 2 

( ) ( ) ( ) ( )
( ) ( )

( ) ( ) ( ) ( )
( ) ( )

2
2

1 2

2
2

1 2

sinh1, cos
sinh

cosh
, sin

cosh

e
n

n

h
n

n

h d y
x y B n x

a d

h d yjx y D n x
a d

γ
α

γ

γ
α

γ

∞

=

∞

=

+ −⎡ ⎤⎣ ⎦Φ =

+ −⎡ ⎤− ⎣ ⎦Φ =

∑

∑

 

 



www.manaraa.com

 20  

 

                              

( ) ( ) ( ) ( )
( ) ( )

( ) ( ) ( ) ( )
( ) ( )

( ) ( ) ( ) ( )
( ) ( )

( ) ( ) ( ) ( )
( ) ( )

2
2

1 2

2
2

1 2

2
2 2

1 2

2
2 2

1 2

sinh1, sin
sinh

cosh
, cos

cosh

cosh1, cos
sinh

sinh
, sin

cosh

e
n n

n

h
n n

n

e
n

n

h
n

n

h d y
x y B n x

x a d

h d yjx y D n x
x a d

h d y
x y B n x

y a d

h d yjx y D n x
y a d

γ
α α

γ

γ
α α

γ

γ
γ α

γ

γ
γ α

γ

∞

=

∞

=

∞

=

∞

=

+ −⎡ ⎤∂ − ⎣ ⎦Φ =
∂

+ −⎡ ⎤∂ − ⎣ ⎦Φ =
∂

+ −⎡ ⎤∂ ⎣ ⎦Φ =
∂

+ −⎡ ⎤∂ − ⎣ ⎦Φ =
∂

∑

∑

∑

∑

                           (2.59) 

Substituting the above equations into (2.4), all of the field components at arbitrary position can 

be calculated.  

2.5  Power flow 

The total power flowing through the cross section of microstrip line can be calculated 

by the integrating the z component of complex Poynting vector ( ) 2E H ∗× over the x -and y -

direction [15]. By the Parseval’s theorem, the spatial domain integral of complex Poynting 

vector can be transferred to spectral domain. In SDA, we already have all the field forms. 

Then the total power can be derived as: 

              
( ), , , ,0 0

1 1ˆ
2 4

d h a d h

x i y i y i y ia
n

P E H zdxdy E H E H dy
a

∞+ +∗ ∗ ∗

−
=−∞

= × ⋅ = −∑∫ ∫ ∫
                 (2.60)

 

where ∗stands for the operator of complex conjugate.  

With the expressions in (2.26), the field components of spectral domain can be written 

in the same forms.  

( ) ( )1 1
1 1, sinhxE y j A C yωμ γα α γ

β
⎛ ⎞

= − +⎜ ⎟
⎝ ⎠

                                                   (2.61) 

( ) ( )1
1 1 1, sinhy

jH y C A yωε αα γ γ
β

⎛ ⎞
= −⎜ ⎟
⎝ ⎠

                                                   (2.62) 
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( ) ( )1
1 1 1, coshy

jE y A C yαωμα γ γ
β

⎛ ⎞
= +⎜ ⎟
⎝ ⎠

                                                   (2.63) 

( ) ( )1
1 1 1, coshxH y j C A yωεα α γ γ

β
⎛ ⎞

= − −⎜ ⎟
⎝ ⎠

                                                   (2.64) 

Multiplying the electric and magnetic fields, we come to 

        

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

1 1 1 1

1 1 1 1

, , sinh sinh

, , cosh cosh

x y A

y x B

E y H y K y y

E y H y K y y

α α γ γ

α α γ γ

∗ ∗

∗ ∗

=

=                                            (2.65)
 

where          

                                 
1 1 1

1

1 1
1 1

A

B

jK j A C C A

jK A C j C A

ωμ γ ωε αα γ
β β

ωμα ωεγ α γ
β β

∗

∗

⎛ ⎞⎛ ⎞
= − + −⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠

⎛ ⎞⎛ ⎞
= + − −⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠

  

Similarly, in region 2 

           

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

2 2 2 2

2 2 2 2

, , sinh sinh

, , cosh cosh

x y C

y x D

E y H y K h d y h d y

E y H y K h d y h d y

α α γ γ

α α γ γ

∗ ∗

∗ ∗

⎡ ⎤= + − + −⎡ ⎤⎣ ⎦ ⎣ ⎦
⎡ ⎤= + − + −⎡ ⎤⎣ ⎦ ⎣ ⎦

                 (2.66) 

where 

                       ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

2 2 2 2

2 2 2 2

2 2 2 2

2 2 2 2

sinh cosh cosh sinh

sinh cosh cosh sinh

C

D

D D j Bj BK
d d d d

B j D Bj DK
d d d d

ωμ γ γ ωε αα
γ β γ γ β γ

γ αωμ ωε γα
γ β γ γ β γ

∗

∗

⎛ ⎞⎛ ⎞−−
= − −⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠

⎛ ⎞⎛ ⎞− −
= + +⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠

 

To simply the expressions, we rewrite the expression into exponential functions which show 

In region 1, 

          

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

( ) ( ) ( )( )1 1 1 1

1 1 1 1

1 1 1 1

2 2 2 2

, , , ,

sinh sinh cosh cosh

1
4

x y y x

A B

R y R y jI y jI y
A B A B

E y H y E y H y

K y y K y y

K K e e K K e e

α α α α

γ γ γ γ

∗ ∗

∗ ∗

− −

−

= −

⎡ ⎤= − + − + +⎣ ⎦                                    (2.67) 

In region 2 
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( ) ( ) ( ) ( )
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α α α α

γ γ γ γ

∗ ∗

∗ ∗

− −

−

= −

⎡ ⎤= − + − + +⎣ ⎦                               (2.68)

 

where      

              

( ) ( )
( ) ( )

1 1 2 2

1 1 2 2

R Re R Re

I Im I Im
L h d y

γ γ

γ γ

= =

= =

= + −

 

With the field expression in the spectral domain, now we can get the integral over y -

direction. By rewriting the integrand in the exponential forms, the integral can be written in 

the close form. For the two regions, we split the integral into two parts. 

Region 1: 

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )
( )( ) ( )( )

( ) ( )

1 1 1 1
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1 1 1 1 10
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1 1

, , , ,

sinh sinh cosh cosh
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4 2 2
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K K e e K K e e dy

e e e eK K K K
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α α α α α

γ γ γ γ
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⎡ ⎤= −⎣ ⎦

⎡ ⎤= −⎣ ⎦

⎡ ⎤= − + − + +⎣ ⎦

⎡ ⎛ ⎞ ⎛ ⎞− −
= − − +⎢ ⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠⎣

∫
∫

∫
⎤
⎥
⎦

             

  (2.69)

 

Region 2: 

( ) ( ) ( ) ( ) ( )
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  (2.70)
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Now we get the integral of the spectral domain fields over y , then the total power can 

be calculated through the series summation 

        
( ) ( )1 20

1

1 1ˆ
2 2

d h a

n na
n

P E H zdxdy P P
a

α α
∞+ ∗

−
=

= × ⋅ = +⎡ ⎤⎣ ⎦∑∫ ∫
                                      (2.71)
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CHAPTER 3.  NUMERICAL CONSIDERATION AND RESULTS 

In Chapter 2, the spectral domain analysis of shield microstrip is conducted. For the 

open microstrip with DNG metamaterials is provided in Appendix A. In this chapter, we focus 

on the numerical implementation of the spectrum domain approach. In order to improve the 

numerical efficiency, several acceleration techniques are introduced, which are implemented 

in the numerical calculation. For the microstrip, the dispersion properties are studied over a 

frequency range from 1GHz to 100GHz with different geometric setups and terms of current 

basis functions. Based on the dispersion results, the field distribution, total power, and 

characteristic impedance can be calculated.  

3.1  Numerical acceleration techniques 

In the spectral domain method of open microstrip line, as the frequency increases and 

the structure becomes complicated, the convergence of the integral tends to be slow. The 

spectral domain approach successfully renders rigorous solution at the expense of higher 

computation cost. 

In [16], several numerical speeding techniques are introduced. In this thesis, these 

methods are also included, which are implemented in the numerical calculation.  The 

computation time is significantly reduced with a high accuracy.  

3.1.1  Integral range reduction 

In method of moments, the Galerkin’s method and Parseval’s theorem are applied to 

derive the eigenvalue equation. To get the K matrix, summation/integral over α from −∞  

to∞ needs to be performed, which is in (2.56). 
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Here we can do to reduce the computation cost by cutting to half. In spectral 

domain, ( )zJ α , ( ),xxG α β , and ( ),zzG α β are even functions of α , while ( )xJ α , ( ),xzG α β , 

and  ( ),zxG α β  are odd functions. So the integrand of K  matrix elements are always even 

functions. 

For open microstrip lines, due to the properties of symmetric integral of even functions, 

we can use the following integrals instead of the previous ones.  

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

0

0

0

2 ,

2 ,

2 ,

mn
xx xm xx xn

mn nm
xz zx xm xz zn

mn
zz zm zz zn

K J G J d

K K J G J d

K J G J d

α α β α α

α α β α α

α α β α α

∞

∞

∞

=

= =

=

∫
∫

∫

                                       (3.1) 

The above integrals can reduce the range by half, which will significantly improve the 

calculation efficiency. For shielded microstrip line, we can use the same technique to cut the 

summation time. 

3.1.2  Symmetry of K Matrix 

In the numerical implementation, filling K matrix elements is always time consuming. 

The decrease of the size can directly reduce the time consumption.  

In the K matrix, we find that the xxK and zzK have the symmetric properties. (3.1) 

implies that  

                        
mn nm
xx xx
mn nm
zz zz

K K

K K

=

=
                                                                                   (3.2) 

So we only need to calculate the elements with 1,...,i M= and ,...,j i M= . It means that 

we only need to calculate the upper triangular matrix of the xxK , zzK .   
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In addition, we have 

                      
( ) ( ) ( )

0
2 ,mn nm

xz zx xm xz znK K J G J dα α β α α
∞

= = ∫ .                                  (3.3) 

Combining (3.2) and  (3.3), we can conclude that 

                                 ( )T
xz zxK K=                                                                                           (3.4) 

Here, it is obvious that we only need to calculate the upper triangular matrix of K matrix. 

3.1.3  Leading term extraction 

3.1.3.1  Close form identity 

In the case of open microstrip lines, for each element of the K matrix, the integral of 

two multiplying Bessel functions over α  is included. If we directly calculate the integral, the 

convergence is very slow and a huge amount of CPU time is needed to get accurate results. 

The leading term extraction technique is one of the techniques that can be applied to reduce 

the CPU time for the integrals. 

In [18, 19, 20], following integral can expressed as the close form.  

       ( ) ( ) ( ) ( ) ( )2 2 2 22 20
1 m n

m n m n
x J ax J ax dx I ay K ay

x y
∞ −= −

+∫                                  (3.5) 

in which ( ) 0Re y > and 2 2 2m n> − . ( )nI x  and ( )nK x are the modified Bessel function of 

the first and second kind. The identity is good except for negative real 2.y When 2y is purely 

negative, there will be a pole in the integral path at y . If we take the residue of the pole into 

consideration, then the identity is still valid [16].  
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( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( )

2 22 20

2 2 2 22 200

2 2

lim
2

1

m n

y

m n m ny

m n
m n

x J ax J ax dx
x y

x jdx J ax J ax J a y J a y
x y

I ay K ay

ε

εε

π

∞

− ∞

+→

−

+

⎡ ⎤= + −⎢ ⎥⎣ ⎦ +

= −

∫

∫ ∫

        (3.6)

 

The above identity can be used in the leading extraction for the K matrix element 

calculation for the open microstrip line.  

3.1.3.2  Leading term conditions 

The asymptotic forms of some expressions need to be derived to perform leading term 

extraction. Asα →∞ , we find that the iγ can be approximated as the first two terms of their 

Taylor expansion.  

            

2 2
2 2 2

2
i

i i
kk βγ α β α

α
−

= + − ≈ +
                                                                      (3.7) 

Once the condition is met, leading term can be extracted. First, we extract the leading 

term for the denominator in (2.47). 

                       
( ) ( ) ( )( )

( )( ) ( ) ( ) ( )

( ) ( ) ( )

2 1 1 2 1 1 2 1 2 1

2 2 2 2 2
1 2

2 2 2 2
1 2

tanh coth

11 1 1
2

1 1
2

r r r r

r r r r

r r

h h

k k

k k

ε γ γ γ μ γ γ γ ε γ γ μ γ γ

α ε μ ε β μ β

μ β ε β

Δ = + + ≈ + +⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦

⎡ ⎤≈ + + + + − + −⎣ ⎦

⎡ ⎤+ + − + −⎣ ⎦

                   (3.8) 

3.1.3.3  Kxx 

With the leading term extraction on the Green’s function, we are able to improve the 

convergence of K matrix. The derivation of the following leading terms extractions can be 

found in [16]. All the following Green’s functions are normalized to 2 2j kη .  
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Once the leading term is obtained in desired form, the identity in (3.6) can be used to 

get the close form for the integral.  

( ) ( ) ( ) ( ) ( )
3

2 2 2 2
2 1 1 2 1 2 2

1 1, tanh
1xx r

r xx

G k k h
y

αα β γ α μ γ α γ
ε α

⎡ ⎤= − + − ≈⎣ ⎦Δ + +
                    (3.9)

   

 

in which  

( )
( )

2 2 2
2 12 1

2 1
r r

xx
r

k k
y

β ε ε
ε

+ + +
=

+ .                                                                                    
(3.10)

 

Thus the element of matrix is            

( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

( ) ( )
( ) { } { }
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3
2 2

2 22 20

2
max 2 ,2 max 2 ,2

.

,

14 1 ,
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1
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1 2 2
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m n
m xx n

r xx

m n
m n xx xx

m n m n
r

K J G J d

mn J G J d
y

wy wymn I K

α α β α α

απ α δ α β δ α
ε α

π
ε

∞

∞+ −

−
+

=

⎡ ⎤
= − −⎢ ⎥+ +⎣ ⎦

− ⎛ ⎞ ⎛ ⎞+ − ⎜ ⎟ ⎜ ⎟+ ⎝ ⎠ ⎝ ⎠

∫

∫                      (3.11) 

3.1.3.4  Kxz 

                      
( ) ( ) ( )

2

2 1 1 2 2, tanh
1xz r

r xz

G h
y

αβ β αα β γ μ γ γ
ε α

= + ≈⎡ ⎤⎣ ⎦Δ + +                                         (3.12)
 

in which  

( )( )
2 2 2 2 2 22

2 1 1 2 2 2 12 2
2 2 1 1

r r r r r r
xz

r r

k k k k k ky ε μ ε μ ε μβ
μ ε

− − − − + +
= +

+ +  .                                           
(3.13) 

Then 
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=

⎧ ⎫⎡ ⎤⎪ ⎪⎛ ⎞ ⎛ ⎞= − − −⎨ ⎬⎢ ⎥⎜ ⎟ ⎜ ⎟+ +⎝ ⎠ ⎝ ⎠⎪ ⎪⎣ ⎦⎩ ⎭
⎛ ⎞ ⎛ ⎞+ ⎜ ⎟ ⎜ ⎟+ ⎝ ⎠ ⎝ ⎠

∫

∫
             (3.14) 
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3.1.3.5  Kzz 
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in which 
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(3.16) 

So  
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m n r
m zz n
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− + − ⎛ ⎞ ⎛ ⎞+ ⎜ ⎟ ⎜ ⎟+ + ⎝ ⎠ ⎝ ⎠

∫

∫        
(3.17) 

After the leading term extraction, we list the new convergence speed according to α  in Table 

1 [16]. 

Table 1.  Convergence comparison of K matrix element and Green’s functions  

before and after leading term (LE) extraction.  
 

 xxG  xxK  xzG  xzK  zzG  zzK  

After LE 3α−      6α −  4α −  6α −    5α−    6α −  

Before LE α       2α −     1   2α −    1α−  2α −  

 

Before the leading term extraction, the convergence of pqK is proportional to 2α − . 

After leading term, the convergence of pqK  has four order improvements. So leading term 

extraction of Green’s functions will improve the numerical calculation efficiency significantly.  
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3.2  Shielded microstrip numerical results 

3.2.1  Dispersion property 

In this part, numerical scripts of spectral domain method (SDA) are used to analyze the 

properties of the shielded microstrip. Fig. 2.1 shows the structures of the shielded microstrip 

lines. In [21], Krowne published his results of shielded microstrip line with DNG 

metamaterials. The normalized propagation constant ( ) 0z j kγ α β= + is calculated by the 

SDA in the frequency range from 1 GHz to 100 GHz. 

First, in order to compare with published results, the shielded microstrip line is studied, 

with air above the strip and DNG materials below with 2.5rε = − and 2.5rμ = − , substrate 

thickness 0.5h = mm, microstrip width 0.5w = mm, two side wall distance 2 10a h=  mm, air 

region height 10d h= . Fig. 3.1 shows the dispersion curves for shielded microstrip line. Our 

numerical results (blue lines) match very well with Krowne’s (red points).  

In Fig 3.1, the solid blue line is α  and dashed blue line is β . One should notice that 

below 6 GHz, α is zero, so complex propagation constant is purely imaginary with one branch. 

In this region, the mode is purely propagating without attenuation. In the frequency range from 

6 GHz to 75 GHz, α is not zero, so complex mode occurs, which will cause the wave to be 

evanescent in z -direction. Above 75 GHz, two branches begin to appear at the point where 

α drops to zero, so two purely propagating modes in z-direction occur in this region.  
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Figure 3.1 The shielded dispersion curves compared to Krowne’s results with the 

same model setup using spectrum domain approach. The shielded microstrip line 

is filled with air above the strip and double negative materials ( )2.5r rε μ= = −  

below the strip, substrate thickness 0.5h = mm, strip width 0.5w = mm, two side 

wall distance 2 10a h= , air region top wall height 10d h= . 

 
To know the effect of PEC boundary conditions, we change the geometric setup. Fig. 

3.2 shows the dispersion curves for the microstrip line with two side PEC walls but the top 

PEC layer has been removed, which can be treated as d = ∞ . The shielded result is also shown. 

From Fig. 3.2, one notices that large d  will not change the dispersion too much.  
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Figure 3.2 The dispersion curves of microstrip with two side walls compared to 

the shielded microstrip line with 10d h= . The shielded microstrip line is filled 

with air above the strip and double negative materials ( )2.5r rε μ= = − below 

the strip, substrate thickness 0.5h = mm, strip width 0.5w = mm, two side wall 

distance 2 10a h= . 

 

Then we decrease the d  and try to see the difference. Fig 3.3 shows the dispersion 

curves for the same shielded microstrip model, but changing the distance d  between strip and 

top PEC layer. As d decreases, the peaks of α  and β  are moving left and up. Moreover, the 

frequency range of the purely propagating mode at low frequency end is decreasing. However, 

above 40 GHz, we do not see significant changes according to d .  
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Figure 3.3 The dispersion curves of three shielded microstrip lines with DNG 

metamaterials, which are filled with air above the strip and double negative 

materials ( )2.5r rε μ= = −  below the strip, substrate thickness 0.5h = mm, 

strip width 0.5w = mm, two side wall distance 2 10a h= . 10d h= , 5d h= , 

4d h= . 

  

If d is decreased further, the disappearance of purely propagating mode at the low 

frequency is expected. Fig 3.4 shows the dispersion curves of the shielded microstrip 

with 3.35d h=  and 3.3d h= . 
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Figure 3.4 The dispersion curves of three shielded microstrip lines with DNG 

metamaterials, which are filled with air above the strip and double negative 

materials ( )2.5r rε μ= = −  below the strip, substrate thickness 0.5h = mm, 

strip width 0.5w = mm, two side wall distance 2 10a h= . 10d h= , 3.35d h= , 

3.3d h= . 

 

For 3.35d h= , below 1.6 GHz, purely propagating mode still exists, but the peak is 

high and at around 0.4 GHz. Above 40 GHz, the propagating curves match well with 

10d h= . As d decrease to 3.3h, there is no propagating mode occurs below 10 GHz. α and 

β decrease, as frequency increases to 40 GHz. Above 40 GHz, the dispersion curves nearly 

keep same with that of the previous model. 
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Fig 3.5 shows the dispersion curves for 4 , 10a h d h= = . Similarly, as a  decreases, the 

purely propagating mode at low frequency is moving left.  
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Figure 3.5  The dispersion curves of two shielded microstrip lines with DNG   

metamaterials, which are filled with air above the strip and double negative 

materials ( )2.5r rε μ= = −  below the strip, substrate thickness 0.5h = mm, strip 

width 0.5w = mm, two side wall distance 5a h= and 4a h= , air region PEC wall 

height 10d h= . 

 

In the spectral domain analysis of shielded microstrip line, the K matrix element 

includes the multiplying of two current basis functions. The result accuracy of the spectrum 

domain approach is dictated by the number of basis functions which also determinates the size 
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of K matrix, the summation tolerance and the root searching accuracy. For high accuracy, the 

price paid is the computation cost, which, however, can be leveraged by applying numerical 

speeding methods, such as leading term extraction, high order integral rule, extrapolation, etc.  

In Chapter 2, the unknown current distribution is expanded with Chebyshev 

polynomials with unknown coefficients. An accurate estimate of the current distribution 

requires more terms of polynomials, which will result in slow convergence.  

Table 2.  Convergence of zγ  over different terms of Chebyshev polynomials for 
shielded microstrip line with 5 , 10 , , 2.5r ra h d h w h ε μ= = = = = − at 10 GHz 

 

M N×  ( ) 0z j kγ α β= ±  

1 1×  2.126446 0.931124 j±  

2 2×  2.126239 0.931385 j±  

3 3×  2.126239 0.931385 j±  

4 4×  2.126239 0.931385 j±  

5 5×  2.126239 0.931385 j±  

6 6×  2.126239 0.931385 j±  

7 7×              2.126239 0.931385 j±  

8 8×  2.126239 0.931385 j±  

 
In Table 2, we use the same summation accuracy control, root searching tolerance etc. 

It shows the convergence test for different number of terms of the Chebyshev polynomials 

being used. From the table, 2M N= =  is sufficient enough to make the result converge to 

high accuracy. 
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3.2.2  Field and power distributions 

[21, 22] show the field distribution plot of the transverse electric E field vector (arrow 

length denotes magnitude) overlaid on the electric-field magnitude throughout the LHM. 

In Chapter 2, we derive the field in spatial domain. If frequency is given, the 

propagation constant can be solved from the eigenvalue equation. Then with the propagating 

constant, the field distribution at any position can be calculated.   

3.2.2.1  Propagating mode at 5GHz 

Fig. 3.6 and Fig. 3.7 show the electric and magnetic field of shielded microstrip line 

with 5 , 10 ,a h d h w h= = = , 2.5r rε μ= = − at 5GHz. In Fig 3.6, at the interface of air and DNG 

metamaterial, the electric fields in the two regions point away from the interface.  

At the interface away from the strip, where 2x w> , the boundary conditions yields:  

                         
( )
( )

2 1

2 1

ˆ 0

ˆ 0

y D D

y E E

⋅ − =

× − =
                                                                               (3.18) 

Using the constitutive relationship, the above equations can be rewritten as : 

                          
1 1 2 2

1 2

r n r n

t t

E E
E E
ε ε=

=
                                                                            (3.19) 

where 1 22.5, 1r rε ε= − =  

Thus the normal electric fields must be in different directions, which mean that they 

point away and toward the interface simultaneously.  

In Fig 3.7, the magnetic field in the regions away from the strip also point away (left) 

and toward (right) the interface. Similarly, the boundary conditions for magnetic fields yield: 
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( )
( )

2 1

2 1

ˆ 0

ˆ 0

y B B

y H H

⋅ − =

× − =
                                                                  (3.20) 

 

Figure 3.6  Electric field vector plot overlaid on electric field magnitude for shielded 

microstrip line with 5 , 10 , , 2.5r ra h d h w h ε μ= = = = = − at 5 GHz 

 
Using the constitutive relationship, the above equations can be rewritten as : 

                                  
1 1 2 2

1 2

r n r n

t t

B B
H H
μ μ=

=
                                                                   (3.21) 

where 1 22.5, 1r rμ μ= − =  
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Thus the magnetic fields must point away and toward the interface simultaneously and 

the tangential magnetic field is continuous at the interface of air and DNG metamaterials. 

 

Figure 3.7  Magnetic field vector plot overlaid on magnetic field magnitude for 

shielded microstrip line with 5 , 10 , , 2.5r ra h d h w h ε μ= = = = = − at 5 GHz 

 

Figure 3.8 is the color plot of the Poynting vector ( zP− ) in the cross section of shielded 

microstrip line. So  

                           ( ) ˆz t t x y y xP E H z E H E H= × ⋅ = −                                                 (3.22) 
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In Fig. 3.8, one notes that the total power is negative. Negative power occurs beneath 

the signal strip. Positive power only exists in the region near the edges of the strip. 

 

Figure 3.8  Color plot of the longitudinal Poynting vector in the corss section of 

microstrip line with 5 , 10 , , 2.5r ra h d h w h ε μ= = = = = − at 5 GHz (actually -Pz is 

plotted) 

 

3.2.2.2  Complex mode at 10GHz 

Fig. 3.9 and Fig. 3.10 show the electric and magnetic field of shielded microstrip line 

with 5 , 10 ,a h d h w h= = = , 2.5r rε μ= = − at 10 GHz. The boundary conditions at the interface 

are still met.  
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In Fig. 3.9, the electric field distribution is similar to that of the propagating mode. 

 
Figure 3.9 Electric field vector plot overlaid on electric field magnitude for 

shielded microstrip line with 5 , 10 , , 2.5r ra h d h w h ε μ= = = = = − at 10 GHz 

 

In Fig 3.10, the magnetic field is slightly different in the region away thestrip 

from the case of 5 GHz. One notes that the magnitude of magnetic field is large near 

the two side walls. The largest magnetic field is at the edges of the signal strip. 
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Figure 3.10 Magnetic field vector plot overlaid on magnetic field magnitude for 

shielded microstrip line with 5 , 10 , , 2.5r ra h d h w h ε μ= = = = = − at 10 GHz 

 

In Fig 3.11, the pointing power is plotted. Negative power is found beneath the 

strip and the region near strip in air. Positive power is found at the interface near the 

strip. The physical meaning of complex mode requires that the total power in the cross 

section is zero.   
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Figure 3.11  Color plot of the longitudinal Poynting vector in the corss section of 

microstrip line with 5 , 10 , , 2.5r ra h d h w h ε μ= = = = = − at 10 GHz (actually -Pz 

is plotted) 

 

3.3  Open microstrip numerical results 

3.3.1  Dispersion property 

If the top PEC and two side walls of the shielded microstrip are removed, then the case 

will be open microstrip. Here we keep all the other setup unchanged. Fig 3.12 shows the 

dispersion curves of open microstrip.  
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    Figure 3.12 The dispersion curves of open microstrip line compared with  

shielded microstrip line with 2.5r rε μ= = − 0.5w h mm= =  

 
In Fig. 3.12, the propagation constant of open microstrip line is in blue. Comparing to 

the shielded case, it is seen thatα is non-zero below 75 GHz, which means that evanescent 

mode occurs. The propagation constant below 40 GHz significantly differs from the shielded 

microstrip line, in which propagating mode occurs at the low frequency end. As the frequency 

increases, the dispersion curves begin to match with the shielded case. For both open and 

shielded cases, we notice the two pure propagating modes above 75 GHz, except the low 

branch at the frequency near 100 GHz. 
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3.3.2  Field and power distribution 

Fig. 3.13 and Fig. 3.14 show the electric and magnetic field of open microstrip line 

with w h= , 2.5r rε μ= = − at 5GHz. In Fig 3.13, the field vector plot is very similar to that of 

the shielded microstrip line with DNG metamaterials.  

 

Figure 3.13 Electric field vector plot overlaid on electric field magnitude for  

open microstrip line with , 2.5r rw h ε μ= = = − at 5 GHz 
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Figure 3.14  Magnetic field vector plot overlaid on magnetic field magnitude for 

open microstrip line with , 2.5r rw h ε μ= = = − at 5 GHz 

 

Fig 3.14 shows the magnetic field distribution. Comparing with that of the shield 

microstrip line, we find that the region near the strip is different. In the open microstrip line, 

the magnetic fields in the region above and below the strip have different direction from that 

of region away the strip. Again, the magnetic fields in air and DNG metamaterial regions point 

away and towards the interface at the same time.  
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Figure 3.15  Color plot of the longitudinal Poynting vector in the corss section of 

open microstrip line with , 2.5r rw h ε μ= = = − at 5GHz (actually -Pz is plotted) 

 

        Fig 3.15 shows the color map of power distribution in open microstrip line. The power in 

air region has positive power and the region below the strip has negative power. The total 

power is zero. 
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3.4  Characteristic impedance 

Once the total power is obtained, the characteristic impedances of microstrip lines can 

be estimated based on the field distribution over the whole cross section. There are three 

definitions for the impedance: the power-current impedance ( )PIZ , the power-voltage 

impedance ( )PVZ , and the voltage-current impedance ( )VIZ  [23]. These three types of 

impedances definitions are analyzed as follows. 

3.4.1  Power-current definition 

In the spatial domain, the total longitude current can be calculated as the integral along 

x -direction. 

2

2
( )

w

zw
I dxJ x

−
= ∫                                                                                 (3.23) 

With the total power in (2.71) for shielded microstrip line and (A.51) for open 

microstrip line, the characteristic impedance can be defined as: 

                     2
2

PI
z

PZ
I

=                                                                                           (3.24) 

3.4.2  Power-voltage definition 

The equivalent voltage on the strip can be derived as the  

10
(0, )

h

yV dyE y= −∫                                                                             (3.25) 

3.4.2.1  Shielded microstrip line 

In the shielded microstrip line,  
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1 10 0

1 1( , ) ( , )
2 2

h h

y m y m
m m

V dy E y dyE y
a a

α α
∞ ∞

=−∞ =−∞

= − = −∑ ∑∫ ∫                           (3.26) 

In spectral domain, the electric field in region 1 is given as: 

( ) ( )1
1 1 1sinh coshm

y
jE A y C y

y
α ωμγ γ
β

∂
= +⎡ ⎤⎣ ⎦∂

                                        (3.27) 

Now the integral along y direction is obtained. 

( ) ( )11
1 10

1

sinh
( , ) sinh

h m
y m

hjdyE y A h C
γα ωμα γ

β γ
= +∫                                 (3.28) 

Applying the summation over α , we arrive at 

( ) ( )11
1

1

sinh1 sinh
2

m

m

hjV A h C
a

γα ωμγ
β γ

∞

=−∞

⎡ ⎤
= − +⎢ ⎥

⎣ ⎦
∑                                     (3.29) 

3.4.2.2  Open microstrip line 

In the open microstrip line,  

1 10 0

1 1( , ) ( , )
2 2

h h

y yV dy d E y d dyE yα α α α
π π

∞ ∞

−∞ −∞
= − = −∫ ∫ ∫ ∫                           (3.30) 

The integral along y direction is in the same form as that of shielded case. 

( ) ( )11
1 10

1

sinh
( , ) sinh

h

y

hjdyE y A h C
γαωμα γ

β γ
= +∫                                       (3.31) 

By the inverse Fourier transform, the equivalent voltage is obtained 

( ) ( )11
1

1

sinh1 sinh
2

hjV d A h C
γαωμα γ

π β γ
∞

−∞

⎡ ⎤
= − +⎢ ⎥

⎣ ⎦
∫                                  (3.32) 

3.4.2.3  Power-voltage characteristic impedance 

Once the total power and equivalent voltage are obtained, characteristic impedance in 

the power-voltage form can be defined as: 
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2

2PV

V
Z

P∗=                                                                                    (3.33) 

3.4.3  Voltage-current definition 

With (3.23) and (3.25), the characteristic impedance in the voltage-current form is 

defined as: 

                            VI
z

VZ
I

=                                                                                        (3.34) 
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CHAPTER 4. CONCLUSIONS AND FUTURE WORKS 

In this thesis, the properties of DNG metamaterials have been studied. The microstrip 

line with DNG metamaterials below the strip and DPS above the strip is analyzed. According 

to different application conditions, two kinds of microstrip lines are studied, which are open 

and shielded.  

For the shielded microstrip line, spectral domain approach is applied for the analysis. 

The dispersion properties can be solved by method of moments. With the obtained 

propagation constant, the fields in spatial domain are calculated from the spectral domain. 

With the fields expression, the total power can be calculated from the integral of the Poynting 

vector. Then Parseval’s theorem is used to transfer the spatial domain to spectral domain. 

Dispersion curves shows that complex mode and purely propagating mode can 

interchangeably occur at different frequency, if the geometry of the microstrip is given. Then 

the microstrip geometric setup is modified to see the change of the dispersion properties. We 

find that the purely propagating mode will disappear, if the height of top PEC is small enough. 

The field distribution at arbitrary positions is plotted at different frequency. 

For the open microstrip line, the dispersion curves, field distribution, power flow are 

analyzed similarly. Compared with the dispersion curves of shielded case, significant 

differences are found at the low frequency. In open microstrip, the purely propagating mode 

only occurs above 75 GHz. From the field plotting, the electric and magnetic field distribution 

is different due to the different boundary conditions.  

The numerical results show that the open microsrtip line with DNG metamaterials is 

not a good candidate as transmission line, due to its high loss at low frequency. However, it 

implies that it can be used in antenna application. 
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One should notice that the major assumption of the above work is a non-dispersion 

DNG medium, while the DNG metamaterials are inherently dispersive. Thus a dispersive 

medium with real loss can be studied.  

Furthermore, investigating a more complicated structure such as multilayer microstrip 

line would be more meaningful.  
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APPENDIX A.  OPEN MICROSTRIP LINE WITH DNG 

METAMATERIALS  

A.1.  Model setup 

The following figure shows the model setup for open microstrip line with DNG 

metamaterials. 

 
Figure A.1 Open-air microstrip line 

 

 Figure A.1 is the cross section of the open air microstrip. The bottom layer is infinite 

PEC. The microstrip is PEC with zero thickness. Then region 1 is filled with DNG material 

and region 2 is filled with air.  

A.2  Spectral domain analysis 

A.2.1  Vector potential 

In order to obtain solutions for the electrical and magnetic fields with boundary 

conditions, auxiliary vector potentials are normally used. The most common vector potentials 

are magnetic vector potential ( A ) and electrical vector potential ( F ).  

The vector potential of TMz mode is given as:  

Region 1

Region 2
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                   ( ) ( ) ( ), , ,e j zi i
zi iA x y z x y e βωμ ε

β
−= − Φ                                                       (A.1) 

The vector potential of the TEz mode is: 

                ( ) ( ) ( ), , ,h j zi i
zi iF x y z x y e βωμ ε

β
−= − Φ                                                       (A.2) 

The above vector potentials satisfy the Helmholtz equations at y h≠ : 

                ( ) ( ) ( ) ( ) ( )2 2 2, , 0p p
t i i ix y k x yβ∇ Φ + − Φ =                                                    (A.3) 

in which, 2 2
i i ik ω ε μ= , 1, 2i = , ,p e h= . 

With the vector potentials, we get the z-components of the electrical and magnetic 

fields: 

               ( ) ( ) ( )2 2 ,e j z
zi i iE j k x y e ββ β −⎡ ⎤= − Φ⎣ ⎦                                                     (A.4) 

              ( ) ( ) ( )2 2 ,h j z
zi i iH j k x y e ββ β −⎡ ⎤= − Φ⎣ ⎦                                                     (A.5) 

A.2.2  Fourier transform  

To reduce the partial differential equations to ordinary differential equations, we apply 

Fourier transform over x .              

( ) ( ) j xf dx f x e αα
∞

−∞
= ∫                                                                                (A.6) 

              ( ) ( )1
2

j xf x d f e αα α
π

∞ −

−∞
= ∫                                                                            (A.7) 

If ( )f α is even function, 

             ( ) ( ) ( )
0

1 cosf x d f xα α α
π

∞
= ∫                                                                     (A.8) 
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If ( )f α is odd function, 

             ( ) ( ) ( )
0

1 sinf x d f xα α α
π

∞
= ∫                                                                       (A.9) 

For the potentials, we have 

      ( ) ( ) ( ) ( ), ,p p j x
i iy dx x y e αα

∞

−∞
Φ = Φ∫                                                                           (A.10) 

      ( ) ( ) ( ) ( )1, ,
2

p p j x
i ix y d y e αα α

π
∞ −

−∞
Φ = Φ∫                                                                   (A.11) 

      
( ) ( ) ( ) ( ) ( ),

,
p

pi j x
i

x y
dx e j y

x
α α α

∞

−∞

∂Φ
= − Φ

∂∫                                                               (A.12) 

Substitute them to the Helmholtz wave equation, we get: 

      ( ) ( )
2

2
2 , 0p

i i
d y
dy

γ α
⎛ ⎞

− Φ =⎜ ⎟
⎝ ⎠

                                                                                     (A.13) 

in which 2 2 2 2
.i ikγ α β= + −  

Depending on the boundary conditions, the solutions to the above equation have two 

forms: 

     ( ) ( ) ( ) ( ) ( ) ( ), i ip p py y
i i iy A e B eγ γα α α −Φ = +                                                                  (A.14) 

or             ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ), sinh coshp p p
i i i i iy C y D yα α γ α γΦ = +                                                  (A.15) 

Applying the Fourier transform to the field expressions, we can get the expression in 

the spectral domain which is same with the shielded case.  

A.2.3  Boundary conditions 

With the given microstrip models, we have several boundary conditions to solve the 

Green functions. 
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Considering PEC boundary condition at 0y = , we have ( )1 , 0 0zE α = . Then we have 

                                   ( ) ( ) ( ) ( )1 1, sinhe y A yα α γΦ =                                                           (A.16) 

            ( ) ( ) ( )1 1
0

, 0 0 , 0h
x

y

E y
y

α α
=

∂
= ⇒ Φ =

∂
         we have 

                                 ( ) ( ) ( ) ( )1 1, coshh y C yα α γΦ =                                                               (A.17) 

When y is increasing to infinite, the filed in the medium 2 should decrease to zero.  So we 

have:  

                                  ( ) ( ) ( ) ( )2
2 ,e y hy B e γα α − −Φ =                                                                    (A.18) 

                                  ( ) ( ) ( ) ( )2
2 ,h y hy D e γα α − −Φ =                                                                    (A.19) 

In order to get the parameters ABCD, four other boundary conditions are needed. The 

tangential field on the interface should be continuous.  It means: 

                                  
( ) ( )
( ) ( )

1 2

1 2

, ,

, ,
z z

x x

E h E h

E h E h

α α

α α

=

=
                                                                        (A.20) 

Substitute (2.26) into (A.20), we arrive at   

                       ( ) ( ) ( )2 2 2 2
1 1 2sinhk A h k Bβ γ β− = −                                                                (A.21) 

                      ( ) ( )1 1 1 1 2 2sinh sinhj A h B C h Dωα γ γ μ γ μ γ
β

− = +⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦                                        (A.22) 

At y h= , the boundary condition for the magnetic field in spatial domain is: 

                             ( )2 1ˆ sy H H J× − =                                                                                   (A.23) 

 Because the surface current is in the x - and z - directions, we can write: 

                        ( ) ( ) ( )ˆ ˆ, , j z
s x zJ x y h z xJ x zJ x e β−= = +⎡ ⎤⎣ ⎦                         (A.24) 

Then we get the boundary condition in spectral domain: 
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                          ( ) ( ) ( ) ( )2 1ˆ ˆ ˆ, , x zy H h H h xJ zJα α α α⎡ ⎤× − = +⎣ ⎦
                                         (A.25) 

For z -component: 

                          ( ) ( )
2 2 2 2
2 1

1cosh x
k kj D j C h Jβ β γ α

β β
− −

− =                                             (A.26) 

For x -component: 

                       ( ) ( ) ( )1 1 1 1 2 2cosh cosh zj D C h h B Jωα γ ε γ γ ε γ α
β

− − + + = −⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦                          (A.27) 

 Now we have four coupled equations with four unknowns. To solve the equations, we 

rewrite them in matrix form: 

       

( ) ( ) ( )
( ) ( )

( ) ( ) ( )
( ) ( )

2 2 2 2
1 1 2

1 1 1 1 2 2

2 2 2 2
1 1 2

1 1 1 2 2 1

sinh 0 0 0
sinh sinh 0

0 0 cosh

cosh cosh
x

z

k h k A
h j h j B

j JCk h k
j JDj h j h

β γ β

αβ γ αβ ωμ γ γ ωμ γ
ββ γ β
βωε γ γ ωε γ αβ γ αβ

⎛ ⎞− − − ⎛ ⎞⎛ ⎞⎜ ⎟ ⎜ ⎟⎜ ⎟−⎜ ⎟ ⎜ ⎟⎜ ⎟ =⎜ ⎟ ⎜ ⎟⎜ ⎟− − −⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎟ −⎝ ⎠ ⎝ ⎠−⎝ ⎠

         (A.28) 

Solving the above matrix problem, we get the parameters ABCD. 

                             
( ) ( )

( ) ( )

1 22 12 122 2
1

1 21 11 112 2
1

1 1

1 1

x z

x z

B Fb b J b J
k

D Fb b J b J
k

αβ α α
β

αβ α α
β

⎡ ⎤
= − + +⎢ ⎥Δ − Δ⎣ ⎦

⎡ ⎤
= − + +⎢ ⎥Δ − Δ⎣ ⎦

                                           (A.29) 

where ( ) ( )
2 22
2

2 1 1 1 2 2 1 1 1 22 2 2 .
1

coth tanhk h h
k

βω μ γ γ μ γ ε γ γ ε γ
β β

−
Δ = − + +⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦−

 

By the boundary condition, we can get: 

                              ( )

( )

2 2
2
2 2

1 1

2 2
2

12 2 2 2
1 1

sinh

coshx

k BA
k h

kjC J D h
k k

β
β γ

ββ γ
β β

−
=

−

⎡ ⎤−
= +⎢ ⎥− −⎣ ⎦

                                               (A.30) 
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A.2.4  Green functions 

Now let’s look at the field at the interface of region 1 and region 2. The spatial domain 

fields are given as: 

                         
( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

2
2 2 2

2 2
2

2 2

, , ,

, ,

e h
x

e
z

E x y y y
x y
kE x y j y

ωμα α
β

β α
β

∂ ∂
= Φ + Φ
∂ ∂

−
= Φ

                                               (A.31) 

The spectral domain fields: 

                        
( ) ( ) ( )

( ) ( ) ( ) ( )

2
2 ,

, ,

x

xx x xz z

E h j B D

G J G J

ωμα α α α
β

α β α α β α

= − −

= +

                                           (A.32) 

                        ( ) ( )

( ) ( ) ( ) ( )

2 2
2

2 ,

, ,

z

zx x zz z

kE h j B

G J G J

βα α
β
α β α α β α

−
=

= +

                                             (A.33) 

The Green’s functions are: 

                      

( ) ( ) ( )

( ) ( ) [ ]

( ) ( ) ( )
( ) ( )

2 2 2 22
1 2 2 1 1

2

2
2 1 1

2

2 2 2 22
1 2 2 1 1

2

2 1 1 2 1 1

, tanh( )

, , tanh( )

, tanh( )

tanh coth

xx r

xz zx r

zz r

r r

jG k k h
k

jG G n h
k

jG k k h
k

h h

ηα β α γ μ α γ γ

η αβα β β γ μ γ γ

ηα β β γ μ β γ γ

ε γ γ γ μ γ γ γ

− ⎡ ⎤= − + −⎣ ⎦Δ
−

= = +
Δ

− ⎡ ⎤= − + −⎣ ⎦Δ

Δ = + +⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦

                                     (A.34) 

where 1 2 1 2, .r rε ε ε μ μ μ= =  

A.3  Galerkin’s methods  

For the open air microstrip, the tangential electrical field components at the interface 

can be found in  (A.32) and (A.33). 
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With Parseval’s theorem, multiplying basis on both sides of (A.32) and (A.33) as in the 

shielded case, then we arrive at            

        

( ) ( )

( ) ( ) ( ) ( ) ( )

( ) ( )

2

2

,

, ,

2 ,

xm x

xx x xz z xm

xm x

J E h d

d G J G J J

dxJ x E x h

α α α

α α β α α β α α

π

∞

−∞

∞

−∞

∞

−∞

⎡ ⎤= +⎣ ⎦

= −

∫
∫
∫

                                   (A.35) 

          

( ) ( )

( ) ( ) ( ) ( ) ( )

( ) ( )

2

2

,

, ,

2 ,

zm z

zx xm zz zm zm

zm z

J E h d

d G J G J J

dxJ x E x h

α α α

α α β α α β α α

π

∞

−∞

∞

−∞

∞

−∞

⎡ ⎤= +⎣ ⎦

= −

∫
∫
∫

                                 (A.36) 

With the above equations, we can fill the elements into the matrix 

                                        0xx xz

zx zz

K K A
K K B

⎛ ⎞⎛ ⎞
=⎜ ⎟⎜ ⎟

⎝ ⎠⎝ ⎠
                                                        (A.37) 

Referring to (2.56), the elements of K matrix are obtained. 

                     

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

,

,

,

mn
xx xm xx xn

mn mn
xz zx xm xz zn

mn
zz zm zz zn

K J G J d

K K J G J d

K J G J d

α α β α α

α α β α α

α α β α α

∞

−∞

∞

−∞

∞

−∞

=

= =

=

∫
∫

∫

                                      (A.38) 

A.4  Field distributions 

In the above parts, we get the potential expressions in the spectral domain: 

                                  

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

2

2

1 1

1 1

2

2

, sinh

, cosh

,

,

e

h

e y h

h y h

y A y

y C y

y B e

y D e

γ

γ

α α γ

α α γ

α α

α α

− −

− −

Φ =

Φ =

Φ =

Φ =

                                                                (A.39)

where ( ) ( ),e
i x yΦ  is an even function of x , and ( ) ( ),h

i x yΦ is an odd function of x . 
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                Region 1 

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

1 10

1 10

1 10

1 10

1 1 10

1 1 10

1, sinh cos

, cosh sin

1, sinh sin

, cosh cos

1, cosh cos

, sinh sin

e

h

e

h

e

h

x y A y x d

jx y C y x d

x y A y x d
x

jx y C y x d
x

x y A y x d
y

jx y C y x d
y

α γ α α
π

α γ α α
π

α γ α α α
π

α γ α α α
π

α γ γ α α
π

α γ γ α α
π

∞

∞

∞

∞

∞

∞

Φ =

−
Φ =

∂ −
Φ =

∂
∂ −
Φ =

∂
∂
Φ =

∂
∂ −
Φ =

∂

∫

∫

∫

∫

∫

∫

                                              (A.40)

Region 2 

                      

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

2

2

2

2

2

2

2 0

2 0

2 0

2 0

2 20

2 20

1, cos

, sin

1, sin

, cos

1, cos

, sin

e y h
n

h y h
n

e y h

h y h

e y h

h y h

x y d B e x

jx y d D e x

x y d B e x
x

jx y d D e x
x

x y d B e x
y

jx y d D e x
y

γ

γ

γ

γ

γ

γ

α α α
π

α α α
π

α α α α
π

α α α α
π

α α γ α
π

α α γ α
π

∞ − −

∞ − −

∞ − −

∞ − −

∞ − −

∞ − −

Φ =

−
Φ =

∂ −
Φ =

∂
∂ −
Φ =

∂
∂ −
Φ =

∂
∂
Φ =

∂

∫

∫

∫

∫

∫

∫

                                                (A.41) 

Substituting the above spatial domain expressions into spatial field expressions, we get 

the field distribution in spatial domain.   

A.5  Power flow 

For the open microstrip, the top PEC layer and two side walls are removed. So the 

integral range over y -direction is from zero to infinity. Moreover, along x -direction, integral 

should be used. So the Parseval’s theorem must be modified to the integral form. The 

expression for total power is given as: 
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( ), , , ,0 0

1 1ˆ
2 4 x i y i y i y iP E H zdxdy E H E H dydα

π
∞ ∞ ∞ ∞∗ ∗ ∗

−∞ −∞
= × ⋅ = −∫ ∫ ∫ ∫               (A.42)

 

Similarly, to fulfill the integral in the spectral domain, the field expressions are listed. 

( ) ( )

( ) ( )

( ) ( )

( ) ( )

2

2

1 1
1 1

2 2
2

1
1 1 1

2
2 2

, sinh

,

, cosh

,

x

y h
x

y

y h
y

CE y j A y

E y j B D e

jE y A C y

jE y B D e

γ

γ

ωμ γα α γ
β

ωμ γα α
β

αωμα γ γ
β

αωμα γ
β

− −

− −

⎛ ⎞
= − +⎜ ⎟
⎝ ⎠
⎛ ⎞

= − −⎜ ⎟
⎝ ⎠
⎛ ⎞

= +⎜ ⎟
⎝ ⎠
⎛ ⎞

= − +⎜ ⎟
⎝ ⎠

                                                            

 (A.43)

  

( ) ( )

( ) ( )

( ) ( )

( ) ( )

2

2

1 1
1 1

2 2
2

1
1 1 1

2
2 2

, cosh

,

, sinh

,

x

y h
x

y

y h
y

H y j C A y

BH y j D e

j AH y C y

j BH y D e

γ

γ

ωε γα α γ
β

ωε γα α
β

αωεα γ γ
β

αωεα γ
β

− −

− −

⎛ ⎞
= − −⎜ ⎟
⎝ ⎠
⎛ ⎞

= − +⎜ ⎟
⎝ ⎠
⎛ ⎞

= −⎜ ⎟
⎝ ⎠
⎛ ⎞

= − −⎜ ⎟
⎝ ⎠

                                                         

 (A.44)
 

Multiplying electrical field and magnetic field,  

Region 1: 

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

1 1 1 1

1 1 1 1

, , sinh sinh

, , cosh cosh

x y A

y x B

E y H y K y y

E y H y K y y

α α γ γ

α α γ γ

∗ ∗

∗ ∗

=

=                                            (A.45)
 

where  

              
1 1 1

1

1 1 1
1

A

B

C j AK j A C

jK A C j C A

ωμ γ αωεα γ
β β

αωμ ωε γγ α
β β

∗

∗

⎛ ⎞⎛ ⎞
= − + +⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠

⎛ ⎞⎛ ⎞
= + − −⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠

 

Region 2: 
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( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

2 2

2 2

2 2

2 2

, ,

, ,

y h y h
x y C

y h y h
y x D

E y H y K e e

E y H y K e e

γ γ

γ γ

α α

α α

∗

∗

− − − −∗

− − − −∗

=

=                                                     (A.46) 

where 

              

2 2 2
2

2 2 2
2

C

D

j BK j B D D

j BK B D j D

ωμ γ αωεα γ
β β

αωμ ωε γγ α
β β

∗

∗

⎛ ⎞⎛ ⎞
= − − − −⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠

⎛ ⎞⎛ ⎞
= − + − +⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠

 

Then we come to: 

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

( )( ) ( )( )1 1 1 1

1 1 1 1

1 1 1 1

2 2 2 2

, , , ,

sinh sinh cosh cosh

1
4

x y y x

A B

R y R y jI y jI y
A B A B

E y H y E y H y

K y y K y y

K K e e K K e e

α α α α

γ γ γ γ

∗ ∗

∗ ∗

− −

−

= −

⎡ ⎤= − + − + +⎣ ⎦                     (A.47)

 

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

( ) ( )

2 2 2 2

2

2 2 2 2

2

, , , ,x y y x

y h y h y h y h
C D

R y h
C D

E y H y E y H y

K e e K e e

K K e

γ γ γ γ

α α α α
∗ ∗

∗ ∗

− − − − − − − −

− −

−

= −

= −                                           (A.48)

 

The integral over y-direction is derived in the close form separately for both regions.  

( ) ( ) ( ) ( ) ( )

( ) ( )
1 1 1 1

1 1 1 1 10

2 2 2 2

1 1

, , , ,

1
4 2 2

h

x y y x

R h R h jI h jI h

A B A B

P dy E y H y E y H y

e e e eK K K K
R I j

α α α α α∗ ∗

− −

⎡ ⎤= −⎣ ⎦

⎡ ⎤⎛ ⎞ ⎛ ⎞− −
= − − +⎢ ⎥⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠⎣ ⎦

∫

                   (A.49)

 

( ) ( ) ( ) ( ) ( )

( )

2 2 2 2 2

2

, , , ,

1
2

x y y xh

C D

P dy E y H y E y H y

K K
R

α α α α α
∞ ∗ ∗⎡ ⎤= −⎣ ⎦

= −

∫

                        (A.50)

 

Finally, the total power can be calculated through the integral overα .  

( ) ( )1 20 0

1 1ˆ
2 2

P E H zdxdy P P dα α α
π

∞ ∞ ∞∗

−∞
= × ⋅ = +⎡ ⎤⎣ ⎦∫ ∫ ∫                              (A.51)
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